The WHO Classification of Renal Tumors and Common Issues in TNM Staging for Renal Cell Carcinoma

Steven Shen, M.D., Ph.D.
Staff Pathologist and Assistant Member
The Methodist Hospital and Research Institute
Associate Professor of Pathology
Weill Medical College of Cornell University,
Houston, Texas, USA
Outline

- Introduction
- WHO 2004 classification
- “Cystic” RCC
- “Granular” RCC
- “Spindle/sarcomatoid” RCC
- Staging issues
Increasing of Cancers of Kidney and Renal Pelvis in USA (1995-2008)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidney</td>
<td>51</td>
<td>56</td>
<td>66</td>
</tr>
<tr>
<td>Bladder</td>
<td>74</td>
<td>78</td>
<td>81</td>
</tr>
<tr>
<td>Prostate</td>
<td>69</td>
<td>76</td>
<td>99</td>
</tr>
<tr>
<td>Testis</td>
<td>83</td>
<td>94</td>
<td>97</td>
</tr>
</tbody>
</table>

RCC Molecular Targeted Therapy

- PDGF
- Bevacizumab®
- VHL
- HIF
- Temsirolimus®
- Everolimus®

- Sorafenib®
- Sunitinib®
- Erlotinib®

VEGF

TGFα

mTOR
RCC “Molecular Targeted” Therapy

- All drugs are active in cytokine refractory patients
 - Tumor shrinkage observed in 50%-80% patients

- Sunitinib or bevacizumab + IFN produce more responses to prolong progression free survival relative to IFN in previously untreated patients

- Temsirolimus prolongs overall survival relative to IFN in patients with poor prognostic features

Surgical Treatment of Renal Tumor

- More smaller tumors are detected
- More incidental tumors
- More benign tumors
- More partial nephrectomy
- More use of laparoscopic approaches
Neoplasms and Partial Nephrectomy

Data from The Methodist Hospital, Houston (n=1280)

<table>
<thead>
<tr>
<th>Period</th>
<th>Benign Neoplasms (%)</th>
<th>Partial Nephrectomy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990-1998</td>
<td>4.7</td>
<td>12.2</td>
</tr>
<tr>
<td>1999-2003</td>
<td>8.6</td>
<td>20.8</td>
</tr>
<tr>
<td>2004-2007</td>
<td>14.1</td>
<td>28.2</td>
</tr>
</tbody>
</table>
Renal Cell Tumor Classification

UICC/AJCC Consensus (1997)

BENIGN
- Oncocytoma
- Papillary adenoma
- Metanephric adenoma

MALIGNANT
- Clear cell RCC
- Papillary RCC
- Chromophobe RCC
- Collecting duct carcinoma
- RCC, unclassified
Renal Cell Tumors Classification
(\textit{WHO 2004})

- Clear cell RCC
 - Multilocular cystic RCC
- Papillary RCC
- Chromophobe RCC
- Carcinoma of the collecting ducts of Bellini
- Renal medullary carcinoma
- Xp11 translocation carcinomas
- Carcinoma associated with neuroblastoma
- Mucinous tubular and spindle cell carcinoma
- RCC, unclassified
- Papillary adenoma
- Oncocytoma
Renal Cell Tumors Classification (WHO 2004)

- Clear cell RCC
 - Multilocular cystic RCC
- Papillary RCC
- Chromophobe RCC
- Carcinoma of the collecting ducts of Bellini
- Renal medullary carcinoma
- Xp11 translocation carcinomas
- Carcinoma associated with neuroblastoma
- Mucinous tubular and spindle cell carcinoma
- RCC, unclassified
- Papillary adenoma
- Oncocytoma
Newly Defined RCC Entities

Xp11 translocation carcinoma
Mucinous tubular spindle cell carcinoma
Multilocular cystic clear cell RCC
Carcinoma associated with neuroblastoma
Proximal tubules

Clear cell RCC (3p-)

Papillary RCC (+7, +17, -Y, others)

Chromophobe RCC (-1, -Y) (others -2, -10, -13 etc)

Oncocytoma (-1, -Y) (Translocations chr 11)

Collecting ducts (medulla)

Collecting duct carcinoma (-1, -6, -14, -15, -22) LOH 8p and 13q
Histology and Incidence

(Selective large series since 1997)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear cell</td>
<td>78%</td>
<td>83%</td>
<td>68%</td>
<td>83.2%</td>
<td>86.3%</td>
<td>77.2%</td>
</tr>
<tr>
<td>Papillary</td>
<td>13.4%</td>
<td>11%</td>
<td>19.8%</td>
<td>11.3%</td>
<td>7.3%</td>
<td>15.2%</td>
</tr>
<tr>
<td>Chromophobe</td>
<td>6.5%</td>
<td>5%</td>
<td>6.4%</td>
<td>4.3%</td>
<td>6.2%</td>
<td>5.6%</td>
</tr>
<tr>
<td>Collecting duct</td>
<td>0</td>
<td>1%</td>
<td>0</td>
<td>0.3%</td>
<td>0.3%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Unclassified</td>
<td>2.1%</td>
<td>?</td>
<td>6.1%</td>
<td>1%</td>
<td>0%</td>
<td>1.4%</td>
</tr>
</tbody>
</table>
Histology and Prognosis

(My simplistic view)

Oncocytoma

Chromophobe RCC

Adenoma Type 1 Type 2 Papillary RCC

Clear cell RCC

Collecting duct Ca

Low Malignant potential High

Histology and Prognosis

(My simplistic view)
Clear cell (conventional) RCC

Growth Pattern
- Classic (solid/acinar)
- Tubular
- Cystic
- Pseudopapillary
- Hemorrhagic
- Hyalinized

Cytomorphology
- Classic clear cell
- Granular
- Epithelioid
- Rhabdoid
- Spindly/sarcomatoid
Clear Cell RCC

Differential Diagnosis

- Morphologic variation of clear cell RCC
- Chromophobe RCC
- Papillary type 2 RCC
- Cellular or epithelioid angiomyolipoma
- Adrenal cortical carcinoma
Papillary RCC

- The second most common type RCC
- Cytogenetic changes: +7, +17, -Y
- Met protooncogen
- More frequent regional nodal metastasis
- Prognosis variable
PRCC, type 1 vs. type 2

Type 1 (n=102)
Type 2 (n=48)

5-yr survival
65% vs. 47%

p=0.017

Shen SS et al. Presented at USCAP 2008, Denver, Colorado
Issues of Papillary RCC

- Mixed type 1 and type 2
- Clear cell RCC, particularly higher grade can have pseudopapillary pattern
- Mixed with clear cell
Papillary RCC with Clear Cell Features: A Clinicopathologic Study of 59 Cases

Steven S Shen, Soo-Jing Jung, Luan D Truong, Qin Yang, Max Lingamfelter, Federico A Monzon, Alberto G Ayala and Jae Y Ro

Presented at USCAP 2008, Denver, Colorado
PRCC with or without clear cells

5-yr survival
67% vs. 45%
p=0.001

Without clear cell
(n=99)

With clear cell
(n=51)
<table>
<thead>
<tr>
<th></th>
<th>Univariate Analysis</th>
<th></th>
<th>Multivariate Analysis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>95% CI</td>
<td>p value</td>
<td>HR</td>
</tr>
<tr>
<td>Patient age</td>
<td>1.038</td>
<td>1.008-1.068</td>
<td>0.011</td>
<td>1.024</td>
</tr>
<tr>
<td>Patient gender</td>
<td>1.413</td>
<td>0.757-2.636</td>
<td>0.277</td>
<td>1.802</td>
</tr>
<tr>
<td>TNM stage group</td>
<td>1.908</td>
<td>1.393-2.613</td>
<td>0.000</td>
<td>1.333</td>
</tr>
<tr>
<td>Nuclear grade</td>
<td>4.248</td>
<td>2.039-8.850</td>
<td>0.000</td>
<td>1.863</td>
</tr>
<tr>
<td>Lymphovascular Inv.</td>
<td>5.853</td>
<td>2.985-11.478</td>
<td>0.000</td>
<td>2.392</td>
</tr>
<tr>
<td>Necrosis</td>
<td>1.134</td>
<td>0.614-2.092</td>
<td>0.688</td>
<td>0.845</td>
</tr>
<tr>
<td>Macrophage</td>
<td>0.622</td>
<td>0.331-1.168</td>
<td>0.140</td>
<td>1.061</td>
</tr>
<tr>
<td>Sarcomatoid</td>
<td>8.506</td>
<td>3.855-18.769</td>
<td>0.000</td>
<td>3.796</td>
</tr>
<tr>
<td>Mucin</td>
<td>0.494</td>
<td>0.195-1.254</td>
<td>0.138</td>
<td>0.919</td>
</tr>
<tr>
<td>RCC Type (1 vs. 2)</td>
<td>1.997</td>
<td>1.116-3.571</td>
<td>0.020</td>
<td>1.449</td>
</tr>
<tr>
<td>Procedure (partial vs. radical)</td>
<td>4.462</td>
<td>1.382-14.409</td>
<td>0.012</td>
<td>2.282</td>
</tr>
<tr>
<td>PRCC with clear cell (with vs. without)</td>
<td>2.518</td>
<td>1.405-4.512</td>
<td>0.002</td>
<td>2.038</td>
</tr>
</tbody>
</table>
Papillary RCC with clear cell features

- Is not uncommon (33%)
- Often higher grade, associated with larger size tumor, more frequent LVI and nodal metastasis
- A strong poor prognostic feature
- Await further study for an unique subtype
Chromophobe RCC

- Two types in 1988
- Better prognostic group
- Association with oncocytoma?
Chromophobe RCC

Key Diagnostic Features

- **Growth patterns**
 - Solid sheets, broad alveoli, tubular
 - Broad fibrotic septae, thick-walled and hyalinized vessels, linear or parallel

- **Cytologic features**
 - Cell types (mixed)
 - Cytoplasmic quality (halo)
 - Nuclear features (wrinkling, binucleation)
 - Cytoplasmic membrane (prominent)
Chromophobe RCC

Three Types of Cells

Type 1: Eosinophilic cell with no perinuclear halo

Type 2: Eosinophilic cell with perinuclear halo

Type 3: Largest polygonal cells with voluminous, reticulated cytoplasm
Chromophobe RCC
Morphologic Spectrum

❖ **Typical:**
Type 3 cells mixed with type 1 and type 2 cells easy to diagnose, ddx from clear cell RCC

❖ **Eosinophilic:**
Predominant type 1 or type 2 cells; difficult to differentiated from oncocytoma
RCC, Unclassified

Definition: tumor that does not fit into any known types by **morphology** or **genetics**

- RCC with mucin production?
- Composites of recognizable types?
- Unrecognizable cell types
- RCC with sarcomatoid change in which the epithelial elements cannot be assigned to one of the known categories
RCC with Mucin Production

- Unclassified RCC

- Papillary RCC (20%~30%)
- Collecting duct carcinoma
- Invasive urothelial carcinoma
- Mucinous tubular and spindle cell carcinoma
Composite Recognizable Types = Unclassfied?

- If low grade, better to diagnose as mixed subtypes
- If high grade, ? RCC, unclassified
“Cystic” Renal Neoplasms

- Cystic nephroma/mixed epithelial and stromal tumor of kidney (MESTK)
- Renal cell carcinoma with cystic change
 - Papillary RCC
 - Clear cell RCC
- Multilocular cystic clear cell RCC
- Tubulocystic RCC
Cystic Nephroma/Mixed Epithelial and Stromal Tumor of Kidney (MESTK)

Lack of nodules or nests of clear cells

Cystic lining – single layers of cells

Variable amount of stroma
Multilocular Cystic Clear Cell RCC

- Composed of entirely cystic components
- Lined by layers of clear cells
- Low nuclear grade (G1 or G2)
- Lack of nodules of solid area of clear cells
- Excellent prognosis
"Granular Cell" RCC

- Granular cell RCC is not a specific entity
- Differential diagnoses include:
 - Clear cell RCC
 - Chromophobe RCC, eosinophilic variant
 - Papillary RCC type 2
 - Oncocytoma
 - Epithelioid angiomyolipoma
<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>All clear cells</td>
<td>12.3%</td>
</tr>
<tr>
<td>Mixed clear /granular cell</td>
<td>67.1%</td>
</tr>
<tr>
<td>All granular cell</td>
<td>20.6%</td>
</tr>
</tbody>
</table>

Data modified from Victor Reuter’s USCAP Long Course 2008
Clear Cell RCC with Granular Cells

- Often mixed with clear cells
- Granular cell component often have higher nuclear grades
- Keys to the diagnosis of clear cell RCC
 - Component of classic clear cell
 - Typical vascular pattern
 - Exclude other histologic types
“Granular” RCC

- Not a specific entity
- Think about clear cell RCC first
- Be familiar with chromophobe RCC
- Keep “angiomyolipoma” in mind
Issues of “Sarcomatoid” RCC
Sarcomatoid Changes Occur in All Histologic Types of RCC

<table>
<thead>
<tr>
<th></th>
<th># Cases</th>
<th># Sarcomatoid (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear cell</td>
<td>818</td>
<td>44 (5.4)</td>
</tr>
<tr>
<td>Papillary</td>
<td>149</td>
<td>7 (4.5)</td>
</tr>
<tr>
<td>Chromophobe</td>
<td>60</td>
<td>1 (1.7)</td>
</tr>
<tr>
<td>Collecting duct</td>
<td>6</td>
<td>4 (66.7)</td>
</tr>
<tr>
<td>Unclassified</td>
<td>15</td>
<td>6 (40)</td>
</tr>
<tr>
<td>Total</td>
<td>1048</td>
<td>62 (6)</td>
</tr>
</tbody>
</table>

(TMH Unpublished Data)
Proximal tubules

- Clear cell RCC (3p-)
- Papillary RCC (+7, +17, -Y, others)

Intercalated cells (cortex)

- Chromophobe RCC (-1, -Y) (others -2, -10, -13 etc)
- Oncocytoma (-1, -Y) (Translocations chr 11)

Collecting ducts (medulla)

- Collecting duct carcinoma (-1, -6, -14, -15, -22) LOH 8p and 13q

Collecting Ducts

SARCOMATOID TRANSFORMATION
Sarcomatoid (Spindle Cell) Changes

- **Histology** of spindle cell
 - Fibrosarcoma (54%)
 - Malignant fibrous histiocytyoma (44%)
 - Undifferentiated sarcoma (NOS) (3%)
 - Rhabdomyosarcomatous component (2%)

- **Amount** of spindle cell
 - Average 45% (range 1% to 99%)

- **Grade** of the spindled elements
 - Low grade (9%)
 - Intermediate to high grade (91%)

De Peralta-Venturina et al. AJSP 2001 25:275-84
Diagnostic Issues of Spindle Cell-Sarcomatoid

Histology grade
(Necrosis, cellularity, mitotic count)

Amount of spindle cell component

Histologic type
Sarcomatoid Changes

- Sampling is important
- Histologic types
- Spindle cell area with at least moderate cytologic atypia
- Report the percentages of sarcomatoid and tumor necrosis
RCC Staging Issues

- Tumor size
- T2 tumors
- T3a
 - Perirenal fat invasion
 - Sinus fat invasion
 - Extent of fat invasion
 - Adrenal invasion
<table>
<thead>
<tr>
<th>Staging</th>
<th>1997 AJCC</th>
<th>2002 AJCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Tumors ≤7 cm, limited to kidney</td>
<td>NA</td>
</tr>
<tr>
<td>T1a</td>
<td>NA</td>
<td>Tumors 4 cm, limited to kidney</td>
</tr>
<tr>
<td>T1b</td>
<td>NA</td>
<td>Tumor >4 cm and ≤ 7 cm, limited to kidney</td>
</tr>
<tr>
<td>T2</td>
<td>Tumor >7 cm, limited to kidney</td>
<td>Tumor >7 cm, limited to kidney</td>
</tr>
<tr>
<td>T3</td>
<td>Tumors extends into major veins or invades adrenal or perinephric tissue, but not beyond Gerota's fascia</td>
<td>Tumors extends into major veins or invades adrenal or perinephric tissue, but not beyond Gerota's fascia</td>
</tr>
<tr>
<td>T3a</td>
<td>Perinephric or adrenal extension</td>
<td>perinephric or sinus fat or adrenal extension</td>
</tr>
<tr>
<td>T3b</td>
<td>Renal-vein or vena-cava involvement below diaphragm</td>
<td>Renal-vein or vena-cava involvement below diaphragm</td>
</tr>
<tr>
<td>T3c</td>
<td>Vena-cava involvement above diaphragm</td>
<td>Vena-cava involvement above diaphragm</td>
</tr>
<tr>
<td>T4</td>
<td>Outside Gerota's fascia</td>
<td>Outside Gerota's fascia</td>
</tr>
</tbody>
</table>
Size Matters

- Largest dimension
- Multiple tumors
- Cut-off criteria for staging
- T1a vs. T1b (4 cm T1 substage)
- T2 (10 cm substage?)
T2 Tumors Are Uncommon

<table>
<thead>
<tr>
<th>T Stage</th>
<th># Cases</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>628</td>
<td>60%</td>
</tr>
<tr>
<td>T2</td>
<td>107</td>
<td>10%</td>
</tr>
<tr>
<td>T3</td>
<td>295</td>
<td>28%</td>
</tr>
<tr>
<td>T4</td>
<td>18</td>
<td>2%</td>
</tr>
<tr>
<td>Total</td>
<td>1048</td>
<td>100%</td>
</tr>
</tbody>
</table>

Form TMH RCC database (1990-2006)
T3a Issues

- Perinephric and sinus fat invasion
- Extend of fat invasion
- Ipsilateral adrenal invasion (T4?)
Renal Sinus Invasion

- Tumor exceeded 4 cm, statistically significant increase in incidence of sinus invasion ($p < .001$)
- Sinus invasion correlated with Fuhrman grade, tumor size, tumor type
- pT1b, pT2 is actually T3 in most clear cell RCC

<table>
<thead>
<tr>
<th>TNM Formulation</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>42</td>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>2002</td>
<td>32</td>
<td>1*</td>
<td>41</td>
</tr>
</tbody>
</table>

*8 cm multilocular cystic renal cell carcinoma.

(Bonsib SM AJSP 2004 174:1594-1600)
Renal Sinus Fat Invasion

- pT3a: directly invades perinephric tissue including sinus fat, direct adrenal invasion

(Bonsib et al. AJSP 2000)
Renal Sinus vs. Perirenal Fat Invasion

Worse

5 yr survival

Perirenal fat inv. 51%
Sinus fat inv. 26%

No difference

SF = Sinus fat inv.
PF = Perirenal fat inv.

Thompson RH et al. J of Urol 2005

Margulis V. et al. J of Urol 2007
Extent of perirenal fat invasion (focal vs. extensive)

Extent of Perirenal Fat Invasion

RCC Adrenal Invasion

- Direct invasion (pT3a)
- Metastasis (M1)
Adrenal Invasion

- Direct adrenal invasion: pT3a
- More aggressive behavior than fat invasion

(Han et al. J Urol 2003)
Adrenal Invasion

(Thompson et al. Cancer 2005)
Ipsilateral adrenal invasion may be reclassified as pT4 tumor?

RCC Staging Summary

- Cut-off size in localized lesion
- T2 tumors are uncommon
- Many >4 cm tumors may have sinus invasion
- Ipsilateral adrenal invasion may be reclassified as pT4?